ПРОГРАММНОЕ УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ КОМПЛЕКСАМИ

Для студентов : учреждений высшего образования

ПРОГРАММНОЕ УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ КОМПЛЕКСАМИ

Допущено

Министерством образования Республики Беларусь в качестве учебного пособия для студентов учреждений высшего образования по специальности «Автоматизация технологических процессов и производств (по направлениям)»

Под редакцией С.О. Новикова

Новиков, С. О. Программное управление технологическими комплексами : учебное пособие / С. О. Новиков, Ю. Н. Петренко ; под ред. С. О. Новикова. — Минск : Вышэйшая школа, 2019. — 365 с.: ил. — Библиогр. : с. 359—361.

УДК 681.51:004.42(075.8)

ББК 32

Чит. зал №1 — 1 экз.

Приводятся сведения о порядке разработки систем автоматизации и управления технологическими комплексами применительно к объектам промышленного назначения. Рассматривается реализация проектов систем управления технологических комплексов на основе ПЛК. Описаны языки программирования ПЛК: РКС, LAD, FBD, STL, SCL, Grafcet, SFC, CFC.

Представлены промышленные компьютерные сети, объединяющие ПЛК, интеллектуальные датчики и исполнительные устройства, а также реализация управления в реальном времени.

Изложены приемы и правила работы в системе программирования CoDeSys.

Для студентов учреждений высшего образования по специальности «Автоматизация технологических процессов и производств». Будет полезно специалистам, занимающимся разработкой дискретных систем управления технологических комплексов.

Оглавление

Список основных сокращений	3
Предисловие	5
Введение	8
Глава 1. Проектирование систем автоматизации	15
1.1. ПЛК как универсальное средство автоматизации	15 18
Контрольные вопросы и задания	20
Глава 2. Цикловое программное управление технологическими комплексами	20
2.1. Функциональный состав цикловых систем программного управления 2.2. Способы формализации работы технологического оборудо-	20
вания 2.2.1. Таблицы истинности 2.2.2. Таблицы состояний 2.2.3. Циклограммы	23 25 27 28
2.2.4. Граф-схемы алгоритмов 2.2.5. Блок-схемы алгоритмов	32 33
Контрольные вопросы и задания	34
Глава З. Программное обеспечение ПЛК	34
3.1. Обзор языков программирования	34 44
Контрольные вопросы и задания	50
Глава 4. Расширение функциональных возможностей языка РКС: LAD и FBD	50
4.1. Операции бинарной логики	50

4.1.1. Последовательные и параллельные схемы в LAD	50
4.1.2. Операции бинарной логики в FBD	56
4.1.3. Программирование с учетом состояния контактов датчиков	62
	64
4.2. Функции для работы с памятью	120120
4.2.1. Катушки (элемент присваивания результата) в LAD	64
4.2.2. Блочные элементы в FBD	70
4.2.3. Коннекторы	76
4.2.4. Оценка фронта импульса	79
4.3. Функции передачи	83
4.4. Таймеры	87
4.4.1. Программирование таймера	88
4.4.2. Запуск таймера	90
4.5. Счетчики	94
4.5.1. Программирование счетчика	94
4.5.2. Операции со счетчиком	97
4.6. Функции сравнения	101
Контрольные вопросы и задания	105
Глава 5. Языки программирования STL и SCL	111
5.1. Базовые функции языка STL	111
5.1.1. Двоичные логические операции	111
5.1.2. Операции с памятью	123
5.1.3. Функции таймеров	128
5.1.4. Функции счетчиков	139
5.2. Операторы управления в языке SCL	144
1	
Контрольные вопросы и задания	150
Глава 6. Язык S7-Graph	150
Контрольные вопросы и задания	157
Глава 7. Автоматизация производства на основе промыш-	
ленных сетей ПЛК	157
	1.00
7.1. Промышленная сеть Profinet	157
7.2. Распределенная автоматизация	167
7.3. Коммуникации в Profinet	171
7.4. Инсталляция сети	176
7.5. Топологии сетей	177
7.6. Технология Profinet: кабели, розетки, коннекторы и коммута-	
торы	180
7.7. Интеграция с IT (Internet Technologies)	182
7.8. Интеграция систем полевых шин	185
Контрольные вопросы и задания	189

силовым столом. Общая компоновка станка для многопозиционной обработки	18
8.1. Циклограмма работы силового стола	19
8.2. Таблица функциональных назначений	19
8.3. Управляющая программа в символах РКС	19
8.4. Схема подключения входов и выходов	19
Контрольные вопросы и задания	20
Глава 9. CoDeSys – система программирования ПЛК	
в стандарте МЭК 61131-3	20
9.1. Запуск CoDeSys	20
9.2. Написание первой программы	20
9.3. Визуализация	21
9.4. Контроль качества выполненных работ	21
Контрольное задание	21
2002	21
Глава 10. Данные и переменные в CoDeSys	2.
10.1. Типы данных	2
10.2. Элементарные типы данных	21
10.2.1. Целочисленные типы	21
10.2.2. Логический тип	21
10.2.3. Действительные типы	22
10.2.4. Интервал времени	22
10.2.5. Время суток и дата	22
10.2.6. Строки	22
10.2.7. Иерархия элементарных типов	22
10.3. Пользовательские типы данных	22
10.3.1. Массивы	22
10.3.2. Структуры	22
10.3.3. Перечисления	22
10.3.4. Ограничение диапазона	22
10.3.5. Псевдонимы типов	22
10.4. Переменные	23
10.4.1. Идентификаторы	23
10.4.2. Распределение памяти переменных	23
10.4.4. Прямая адресация	2:
10.4.4. Поразрядная адресация	2:
10.4.5. Преооразование типов	2:
10.4.0. Осоосиности вычислении	
10.4.7. Венгерская запись	2

Глава 11. Языки SFC и CFC стандарта МЭК 61131-3 в CoDeSys.	243
11.1. Проблема программирования ПЛК	243
11.2. ПЛК как конечный автомат	244
11.3. Сети Петри	247
1.4. SFC-диаграммы	248
1.5. Последовательные функциональные схемы SFC	250
11.5.1. Шаги	250
11.5.2. Переходы	251
11.5.3. Начальный шаг	251
11.5.4. Параллельные ветви	252
11.5.5. Альтернативные ветви	253
11.5.6. Переход на произвольный шаг	254
1.6. Функциональные блоки и программы SFC	255
11.6.1. Отладка и контроль исполнения	256
11.6.2. Пример реализации последовательного управления	
по времени (PRG LD, SFC)	258
11.6.3. Пример управления реверсивным приводом	259
1.7. Графический редактор CFC	265
11.7.1. Наиболее важные команды редактора СРС	265
11.7.2. CFC в режиме Online	268
11.8. Примеры реализации в CoDeSys элементов систем управления	270
11.8.1. Регулятор	270
11.8.2. Широтно-импульсный модулятор на базе таймера	
Контрольные задания	280
Глава 12. Имитационные и управляющие модели систем	
управления электроприводами	281
12.1. Имитационная модель управления шаговым двигателем	281
12.1.1. Описание шагового двигателя	281
12.1.2. Построение программных моделей	291
12.1.3. Результаты работы программы	299
12.1.4. Руководство по эксплуатации	301
12.1.5. Практический пример системы управления шаговым	
двигателем на основе микроконтроллера семейства AVR	303
12.2. Обзор возможностей системы CoDeSys 3.0	306
12.2.1. Система расширения реального времени	306
12.2.2. Работа с файлами в системе CoDeSys 3.0	308
12.2.3. Объектно-ориентированные расширения	
МЭК 61131-3	308
12.3. Имитационная модель управления ДПТ	315
ЛПТ	315

12.3.2. Система управления ДПТ с ПИД-регулятором	316
12.3.3. Подключение силового ключа к выходу ШИМ	318
12.3.4. Реализация и анализ системы управления ДПТ	319
Глава 13. Автоматизация работы оборудования энергоси-	
стемы на основе ПЛК	332
13.1. Автоматическое повторное включение оборудования	333
13.2. Электрическое АПВ однократного действия	336
13.3. Автоматический ввод резерва	339
13.3.1. Основные требования к схемам АВР	339
13.3.2. Принцип действия АВР	341
13.4. Модель автоматизированной системы управления техноло-	
гическим процессом подстанции в программной среде CoDeSys	344
Контрольные задания к главам 12, 13	348
Задачи и упражнения	349
Примеры решения задач	357
Литература	359